Country/region and language selection

Ceramics processing

Microprocessing of ceramics

Ceramics are an important material in micro and precision engineering and are indispensable when producing electronic components, for example. As the requirements on the materials increase, higher hardness and temperature resistance are required. However, as their hardness increases ceramics become increasingly brittle and are therefore, difficult to process using conventional methods. To prevent the component being weakened by cracks or tension, low speeds need to be used for mechanical methods. The tools wear quickly and, in many cases, costly rework is required to achieve good component quality. In comparison, laser processing offers a number of clear advantages.

Summary: By selecting the appropriate laser parameters, such as the pulse energy, pulse overlap rate, and repetition rate, the development of micro-cracks can be prevented, which eliminates the need for expensive rework.

Material Ceramic
Conventional method Mechanical CO2 laser
Challenge Processing that causes minimal damage
Lasers TruMicro 6020
Wavelength 1030 nm
Optical system Scanner
Max. pulse energy < 500 µJ (application)
2 mJ (laser)
Processing options

Drilling < 20 holes
Cutting/up to < 20 mm/s
Scoring < 1000 mm/s

Advantages Processing that causes minimal damage; no rework; the non-contact processing method means there is no tool wear; any geometry can be produced with minimal corrections; flexibility  


TruMicro Serie 6000, product image
TruMicro Series 6000

Powerful, compact, flexible

Laser Technology Sales
Service & contact